3.113 \(\int \frac{\sin ^4(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=175 \[ \frac{3 (a+b) (a+5 b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 a^{7/2} f}-\frac{b (13 a+15 b) \tan (e+f x)}{8 a^3 f \sqrt{a+b \tan ^2(e+f x)+b}}-\frac{5 (a+b) \sin (e+f x) \cos (e+f x)}{8 a^2 f \sqrt{a+b \tan ^2(e+f x)+b}}+\frac{\sin (e+f x) \cos ^3(e+f x)}{4 a f \sqrt{a+b \tan ^2(e+f x)+b}} \]

[Out]

(3*(a + b)*(a + 5*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*a^(7/2)*f) - (5*(a + b)
*Cos[e + f*x]*Sin[e + f*x])/(8*a^2*f*Sqrt[a + b + b*Tan[e + f*x]^2]) + (Cos[e + f*x]^3*Sin[e + f*x])/(4*a*f*Sq
rt[a + b + b*Tan[e + f*x]^2]) - (b*(13*a + 15*b)*Tan[e + f*x])/(8*a^3*f*Sqrt[a + b + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.217153, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4132, 470, 527, 12, 377, 203} \[ \frac{3 (a+b) (a+5 b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 a^{7/2} f}-\frac{b (13 a+15 b) \tan (e+f x)}{8 a^3 f \sqrt{a+b \tan ^2(e+f x)+b}}-\frac{5 (a+b) \sin (e+f x) \cos (e+f x)}{8 a^2 f \sqrt{a+b \tan ^2(e+f x)+b}}+\frac{\sin (e+f x) \cos ^3(e+f x)}{4 a f \sqrt{a+b \tan ^2(e+f x)+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(3*(a + b)*(a + 5*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*a^(7/2)*f) - (5*(a + b)
*Cos[e + f*x]*Sin[e + f*x])/(8*a^2*f*Sqrt[a + b + b*Tan[e + f*x]^2]) + (Cos[e + f*x]^3*Sin[e + f*x])/(4*a*f*Sq
rt[a + b + b*Tan[e + f*x]^2]) - (b*(13*a + 15*b)*Tan[e + f*x])/(8*a^3*f*Sqrt[a + b + b*Tan[e + f*x]^2])

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sin ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right )^3 \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\cos ^3(e+f x) \sin (e+f x)}{4 a f \sqrt{a+b+b \tan ^2(e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{a+b-4 (a+b) x^2}{\left (1+x^2\right )^2 \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{4 a f}\\ &=-\frac{5 (a+b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\cos ^3(e+f x) \sin (e+f x)}{4 a f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{(a+b) (3 a+5 b)-10 b (a+b) x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{8 a^2 f}\\ &=-\frac{5 (a+b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\cos ^3(e+f x) \sin (e+f x)}{4 a f \sqrt{a+b+b \tan ^2(e+f x)}}-\frac{b (13 a+15 b) \tan (e+f x)}{8 a^3 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{3 (a+b)^2 (a+5 b)}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 a^3 (a+b) f}\\ &=-\frac{5 (a+b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\cos ^3(e+f x) \sin (e+f x)}{4 a f \sqrt{a+b+b \tan ^2(e+f x)}}-\frac{b (13 a+15 b) \tan (e+f x)}{8 a^3 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{(3 (a+b) (a+5 b)) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 a^3 f}\\ &=-\frac{5 (a+b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\cos ^3(e+f x) \sin (e+f x)}{4 a f \sqrt{a+b+b \tan ^2(e+f x)}}-\frac{b (13 a+15 b) \tan (e+f x)}{8 a^3 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{(3 (a+b) (a+5 b)) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 a^3 f}\\ &=\frac{3 (a+b) (a+5 b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 a^{7/2} f}-\frac{5 (a+b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\cos ^3(e+f x) \sin (e+f x)}{4 a f \sqrt{a+b+b \tan ^2(e+f x)}}-\frac{b (13 a+15 b) \tan (e+f x)}{8 a^3 f \sqrt{a+b+b \tan ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 3.71712, size = 229, normalized size = 1.31 \[ \frac{\sec ^3(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (24 \left (a^2+6 a b+5 b^2\right ) \sin ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{a+b}}\right ) (a \cos (2 (e+f x))+a+2 b)-2 \sqrt{2} \sqrt{a} \sqrt{a+b} \sin (e+f x) \sqrt{\frac{a \cos (2 (e+f x))+a+2 b}{a+b}} \left (a^2 (-\cos (4 (e+f x)))+7 a^2+2 a (3 a+5 b) \cos (2 (e+f x))+62 a b+60 b^2\right )\right )}{256 a^{7/2} f \sqrt{a+b} \sqrt{\frac{-a \sin ^2(e+f x)+a+b}{a+b}} \left (a+b \sec ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(24*(a^2 + 6*a*b + 5*b^2)*ArcSin[(Sqrt[a]*Sin[e + f*x])/Sqrt[a
+ b]]*(a + 2*b + a*Cos[2*(e + f*x)]) - 2*Sqrt[2]*Sqrt[a]*Sqrt[a + b]*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a +
b)]*(7*a^2 + 62*a*b + 60*b^2 + 2*a*(3*a + 5*b)*Cos[2*(e + f*x)] - a^2*Cos[4*(e + f*x)])*Sin[e + f*x]))/(256*a^
(7/2)*Sqrt[a + b]*f*(a + b*Sec[e + f*x]^2)^(3/2)*Sqrt[(a + b - a*Sin[e + f*x]^2)/(a + b)])

________________________________________________________________________________________

Maple [C]  time = 0.424, size = 1714, normalized size = 9.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

1/8/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/a^3*(b+a*cos(f*x+e)^2)*(2*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b
)/(a+b))^(1/2)*a^2-2*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-3*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)
*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/
2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b
)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2*sin(f*
x+e)-18*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)
*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1
+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2
+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b*sin(f*x+e)-15*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)
+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-
b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a
^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2*sin(f*x+e)+6*2^(1/2)*(1/(a+b)*(I*cos(f*x
+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^
(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)
+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*
I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2*sin(f*x+e)+36*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2
)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*co
s(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e
),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2))*a*b*sin(f*x+e)+30*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1
+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^
(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-
b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2*sin(f*x+e)-5*co
s(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-5*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*
a*b+5*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+5*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2)*a*b-13*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-15*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)
/(a+b))^(1/2)*b^2+13*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+15*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^
2)*sin(f*x+e)/(-1+cos(f*x+e))/cos(f*x+e)^3/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 6.32618, size = 1667, normalized size = 9.53 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/64*(3*(a^2*b + 6*a*b^2 + 5*b^3 + (a^3 + 6*a^2*b + 5*a*b^2)*cos(f*x + e)^2)*sqrt(-a)*log(128*a^4*cos(f*x +
e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b +
70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7
 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2
- b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 8*(2*a^3*cos(f*x + e
)^5 - 5*(a^3 + a^2*b)*cos(f*x + e)^3 - (13*a^2*b + 15*a*b^2)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x
 + e)^2)*sin(f*x + e))/(a^5*f*cos(f*x + e)^2 + a^4*b*f), -1/32*(3*(a^2*b + 6*a*b^2 + 5*b^3 + (a^3 + 6*a^2*b +
5*a*b^2)*cos(f*x + e)^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*
b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*
b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*(2*a^3*cos(f*x + e)^5 - 5*(a^3 + a^2*b)*cos(f*x + e)^
3 - (13*a^2*b + 15*a*b^2)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^5*f*cos(f
*x + e)^2 + a^4*b*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**4/(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(3/2), x)